June 11, 2020

scalloped tongue thyroid

Hypothyroidism and the Scalloped Tongue: Quick Overview

People with hypothyroidism (an underactive thyroid gland) usually develop enlarged tongues with scalloped edges. In other words, when there is a decrease in the thyroid function, your tongue becomes slightly larger, which then presses onto the teeth, causing indentations.

May 7, 2020

How Can You Reduce and Prevent Mold Allergy?
Mold is a type of multicellular organism found throughout nature and in our own homes. People are said to have a mold allergy when their immune system overreacts to breathing in mold spores.

October 29, 2019

Attention Deficit Hyperactivity Disorder

Attention Deficit Hyperactivity Disorder (ADHD) is a widespread neurodevelopmental disorder in children. It is usually detected in childhood and mostly continues into adulthood. Children with ADHD may find it challenging to pay attention, control their impulsive behavior, or be extremely active.

October 16, 2019

Graves' Disease
Graves’ disease is the most common autoimmune disease in the United States. It is known to affect an estimated 2 to 3 percent of the world’s population. Read on to learn more about Graves’ disease.

February 8, 2017

Stroke is a form of cardiovascular disease affecting the blood supply to the brain. Also referred to as cerebrovascular disease or apoplexy, strokes actually represent a group of diseases that affect about one out of five people in the United States.

In the US, approximately 40% of stroke deaths are in males, with 60% in females. According to the American Heart Association (AHA), in 2006, the stroke death rates per 100,00 population could be split into specific social groups at 41.7% for white males, 41.1% for white females, 67.7% for black males and 57.0% for black females.

Blood carries essential nutrients and oxygen to your brain. Without blood, your brain cells can be damaged or destroyed and they won’t be able to do their job.

Because your brain controls everything your body does, a stroke will affect the way your body functions. For example, if a stroke damages the part of your brain that controls your right leg, then you may have weakness or numbness in that leg. Your brain also controls how you think, learn, feel and communicate. A stroke is sudden and the effects on your body are immediate.

How does Stroke happen?

There are two main types of stroke. The most common type of stroke (about 85% of cases) is caused by a blockage. This is called an Ischaemic stroke and may be caused when –

  • Cerebral Thrombosis – A blood clot forms in a main artery to the brain.
  • Cerebral Embolism – A blockage, usually a blood clot from the heart, is carried in the bloodstream to one of the arteries supplying the brain.
  • Lacunar Stroke – A blockage forms in the tiny blood vessels deep within the brain.

Ischemic strokes may also be caused by a sticky substance called plaque that can clog arteries.

Some strokes are caused by bleeding in or around the brain. This type of stroke is called a Haemorrhagic stroke. It may be caused when –

  • A blood vessel bursts within the brain (an intracerebral haemorrhage), or
  • A blood vessel on the surface of the brain bursts, causing bleeding into the area between the brain and the skull (called a subarachnoid haemorrhage).

Hemorrhagic strokes may also occur when someone is taking blood thinners, such as warfarin (Coumadin). Very high blood pressure may cause blood vessels to burst, leading to hemorrhagic stroke.

An ischemic stroke can develop bleeding and become a hemorrhagic stroke.

Other Causes

High blood pressure is the main risk factor for strokes. The other major risk factors are:

  • Atrial fibrillation
  • Diabetes
  • Family history of stroke
  • High cholesterol
  • Increasing age, especially after age 55
  • Race (black people are more likely to die of a stroke)
  • Stroke risk is also higher in:
  • People who have heart disease or poor blood flow in their legs caused by narrowed arteries
  • People who have unhealthy lifestyle habits such as smoking, a high fat diet, and lack of exercise
  • Women who take birth control pills (especially those who smoke and are older than 35)

A transient ischaemic attack (also called a TIA or mini-stroke) happens when there is a temporary blockage in the blood supply to the brain. A TIA doesn’t cause permanent damage to your brain and the symptoms usually pass within 24 hours.

It’s often hard to tell the difference between a stroke or TIA, so if you think someone is having a TIA you should still call 999. A TIA can be an important warning that there is a problem with the blood supply to your brain.

Risk Factors

Age – The older a person gets, the greater the risk of stroke.

Sex – Men are 30% more likely to have a stroke than women. But after menopause, a woman’s risk of stroke rises significantly.

Family history – Having a parent, grandparent, or sibling who has had a stroke, puts you at greater risk yourself.

Race – African-Americans have a greater risk of stroke than Caucasians. This is related to an increased risk of high blood pressure, obesity, and diabetes in African-Americans.

Heart attack – If you have had a heart attack in the past, you are more likely to have a stroke than someone who has not had a heart attack.

A history of migraine headaches – Recent studies indicate that people with migraines may be at higher risk for ischemic stroke.

A prior stroke – If you have had a stroke, you are at increased risk for another.

Sickle cell anemia – People with this condition are at risk for stroke at a younger age.

Berry aneurysms – Some people are born with small, sac-like areas within the wall of an artery in the brain. They occur most often at the junctures of vessels at the base of the brain. Berry aneurysms may rupture without warning, causing bleeding within the brain.

Symptoms

The symptoms of stroke depend on which part of the brain is damaged. In some cases, a person may not know that a stroke has occurred.

Most of the time, symptoms develop suddenly and without warning. However, symptoms may occur on and off for the first day or two. Symptoms are usually most severe when the stroke first happens, but they may slowly get worse.

  • A headache may occur if the stroke is caused by bleeding in the brain. The headache:
  • Starts suddenly and may be severe
  • May be worse when you are lying flat
  • Wakes you up from sleep
  • Gets worse when you change positions or when you bend, strain, or cough

Other symptoms depend on how severe the stroke is and what part of the brain is affected. Symptoms may include –

  • Change in alertness (including sleepiness, unconsciousness, and coma)
  • Changes in hearing
  • Changes in taste
  • Changes that affect touch and the ability to feel pain, pressure, or different temperatures
  • Clumsiness
  • Confusion or loss of memory
  • Difficulty swallowing
  • Difficulty writing or reading
  • Dizziness or abnormal feeling of movement (vertigo)
  • Eyesight problems, such as decreased vision, double vision, or total loss of vision
  • Lack of control over the bladder or bowels
  • Loss of balance
  • Loss of coordination
  • Muscle weakness in the face, arm, or leg (usually just on one side)
  • Numbness or tingling on one side of the body
  • Personality, mood, or emotional changes
  • Trouble speaking or understanding others who are speaking
  • Trouble walking

Treatment

People who are having stroke symptoms need to get to a hospital as quickly as possible.

If the stroke is caused by a blood clot, a clot-busting drug may be given to dissolve the clot.

To be effective, this treatment must be started within 3 to 4 1/2 hours of when the symptoms first started. The sooner this treatment is started, the better chances of a good outcome.

Other treatments given in the hospital will depend on the cause of the stroke. These may include:

Blood thinners such as heparin, warfarin (Coumadin), aspirin, or clopidogrel (Plavix)

Medicine to control risk factors, such as high blood pressure, diabetes, and high cholesterol.

Physical therapy, occupational therapy, speech therapy, and swallowing therapy will all begin in the hospital. If the person has severe swallowing problems, a feeding tube in the stomach (gastrostomy tube) will likely be needed.

Medications

Aspirin – Aspirin is an immediate treatment given in the emergency room to reduce the likelihood of having another stroke. Aspirin prevents blood clots from forming.

Intravenous injection of tissue plasminogen activator (TPA) – Some people can benefit from an injection of a recombinant tissue plasminogen activator (TPA), also called alteplase. An injection of TPA is usually given through a vein in the arm. This potent clot-busting drug needs to be given within 4.5 hours after stroke symptoms begin if it’s given in the vein.

Statins – If the level of cholesterol in the blood is too high, patient will be advised to take a medicine known as a statin. Statins reduce the level of cholesterol in the blood by blocking an enzyme (chemical) in the liver that produces cholesterol.

Antihypertensives – If the blood pressure is too high, patient may be offered medicines to lower it. Medicines that are commonly used include –

  • thiazide diuretics
  • angiotensin-converting enzyme (ACE) inhibitors
  • calcium channel blockers
  • beta-blockers
  • alpha-blockers

Surgeries

  • Carotid endarterectomy
  • Angioplasty and stents
  • Surgical clipping
  • Coiling (endovascular embolization)
  • Surgical AVM removal
  • Intracranial bypass
  • Stereotactic radiosurgery

Alternative treatment

Alpha-lipoic acid – Alpha-lipoic acid works together with other antioxidants, such as vitamins C and E. It is important for growth, helps to prevent cell damage, and helps the body rid itself of harmful substances. Because alpha-lipoic acid can pass easily into the brain, it has protective effects on brain and nerve tissue and shows promise as a treatment for stroke and other brain disorders involving free radical damage.

Calcium – In a population based study (one in which large groups of people are followed over time), women who take in more calcium, both through the diet and supplements, were less likely to have a stroke over a 14 year period.

Folic Acid, Vitamin B6, Vitamin B12, and Betaine – Many clinical studies indicate that patients with elevated levels of the amino acid homocysteine are as much as 2.5 times more likely to suffer from a stroke than those with normal levels. Homocysteine levels are strongly influenced by dietary factors, particularly vitamin B9 (folic acid), vitamin B6, vitamin B12, and betaine. These substances help break down homocysteine in the body.

Magnesium – Population based information suggests that people with low magnesium in their diet may be at greater risk for stroke.

Omega-3 Fatty Acids – Strong evidence from population-based studies suggests that omega-3 fatty acid intake (primarily from fish) helps protect against stroke caused by plaque buildup and blood clots in the arteries that lead to the brain.

Potassium – Although low levels of potassium in the blood may be associated with stroke, taking potassium supplements does not seem to reduce the risk of having a stroke.

Vitamin C – Having low levels of vitamin C contributes to the development of atherosclerosis and other damage to blood vessels and the consequences, such as stroke. Vitamin C supplements may also improve cognitive function if you have suffered from multiple strokes.

Vitamin E – Eating plenty of foods rich in vitamin E, along with other antioxidants like vitamin C, selenium, and carotenoids, reduces your risk for stroke. In addition, low levels of vitamin E in the blood may be associated with risk of dementia (memory impairment) following stroke.

Coenzyme Q10 – works as an antioxidant and may reduce damage following a stroke. CO Q10 may interfere with some blood-thinning medicines, such as warfarin (Coumadin) and others.

Selenium – low levels can worsen atherosclerosis and its consequences. However, it is not known if taking selenium supplements will help.

Bilberry – A close relative of the cranberry, bilberry fruits contain flavonoid compounds called anthocyanidins. Flavonoids are plant pigments that have excellent antioxidant properties.

Garlic – Clinical studies suggest that fresh garlic and garlic supplements may prevent blood clots and destroy plaque. Blood clots and plaque block blood flow and contribute to the development of heart attack and stroke. Garlic may also be beneficial for reducing risk factors for heart disease and stroke like high blood pressure, high cholesterol, and diabetes.

Ginkgo – Gingko may reduce the likelihood of dementia following multiple strokes (often called multi-infarct dementia). The protection from ginkgo may be related to the prevention of platelet adhesion which can help prevent blood clot formation. Most health care providers choose to use medications for this effect rather than herbs.

Ginseng – Asian ginseng may decrease endothelial cell dysfunction. Endothelial cells line the inside of blood vessels. When these cells are disturbed, referred to as dysfunction, it may lead to a heart attack or stroke.

Acupuncture – Many studies have been conducted on the effects of acupuncture during stroke rehabilitation. These studies show that acupuncture reduces hospital stays and improves recovery speed. Acupuncture has been shown to help stroke patients regain motor and cognitive skills and to improve their ability to manage daily functioning.

Chiropractors do not treat stroke, and high velocity manipulation of the upper spine is considered inappropriate in individuals who are taking blood-thinning medications or other medications used to reduce the risk of stroke.

 

Reference –

https://www.nice.org.uk/guidance/cg68/chapter/Introduction#drugs

http://www.nhs.uk/Conditions/Stroke/Pages/treatment.aspx

http://www.stroke.org.nz/preventing-stroke-translations

http://www.stroke.org.nz/preventing-stroke-translations

http://www.strokeassociation.org/idc/groups/stroke-public/@wcm/@hcm/@sta/documents/downloadable/ucm_452860.pdf

https://www.nlm.nih.gov/medlineplus/stroke.html

https://www.stroke.org.uk/

http://www.stroke.org/understand-stroke/what-stroke

http://www.emedicinehealth.com/stroke/article_em.htm

http://www.heartandstroke.com/site/c.ikIQLcMWJtE/b.3483935/k.736A/Stroke__What_is_Stroke.htm

 

February 8, 2017

Migraines are a type of recurring severe headache that can cause you to have time off work and need to rest in bed. They are often accompanied by feeling sick, vomiting or an increased sensitivity to light.

It’s estimated that about 36 million Americans suffer from migraine, but only 1 of every 3 people talk with a doctor about their headaches. Of those, only half get the right diagnosis.

Women are roughly three times more likely to get migraines than men. About four in every 20 women get migraines, while only about one in every 20 men do. You can get migraines for the first time at any age, but they commonly start during the teenage years.

In general, a migraine is a very bad headache that tends to come back. It may occur as often as several times a week or only once every few years. It can last anywhere from a few hours to 3 days. The pain usually begins in the morning, on one side of the head. (In fact, the word migraine is derived from a Greek word that means “half-head.”) Less frequently, the entire head is swallowed up by pain.

The amount of pain can vary. Some migraines can be fairly mild, while others seem almost unbearable. Obviously, the worse the pain, the more trouble you have carrying out daily activities, whether it’s going to work or simply getting out of bed. Of course, different people have different abilities to put up with pain. For some people, even a mild migraine can force them to lie down; others are able to work through a more severe migraine.

Two types of migraines

While there are many variations, there are two main types of migraines –

Migraine without aura (previously called common migraine) – Almost 80 percent of migraine sufferers have this type of migraine.

Migraine with aura (previously called classic migraine) – This type of migraine announces itself about a half-hour before the onset of head pain with an aura.

Aura is a term used to describe the visual or sensory symptoms that some people get when their migraine is starting. The following are less common types of migraine –

  • Retinal migraines are headaches associated with visual changes in one eye only.
  • Abdominal migraines are associated with stomach pains, and happen more often in children.
  • Menstrual migraines can happen in women two days before their period starts or finishes.
  • Status migrainosus are migraines that can last for a few weeks.

Migraine is a medical condition that can have a big effect on your life and others caring for you. It can affect your daily life and can mean taking time off work or school.

Causes

There are many theories that discuss the causes of migraine. The cortical spreading depression (CSD) theory suggests that migraine is a disease of the brain such as angina is a disease of the heart. Disruption of normal brain functioning is believed to be the underlying cause of the migraine pain and aura. Another theory is the vascular theory which suggests that migraines result from the widening of blood vessels surrounding the brain. The chemical serotonin is also thought to play an important role in migraine development. While the precise cause of migraines remains unknown, a number of potential migraine triggers (habits or conditions associated with the onset of a migraine) have been identified.

Some people who suffer from migraines can clearly identify triggers or factors that cause the headaches, but many cannot. Potential migraine triggers include –

  • Allergies and allergic reactions
  • Bright lights, loud noises, flickering lights, smoky rooms, temperature changes, strong smells and certain odors or perfumes
  • Physical or emotional stress, tension, anxiety, depression, excitement
  • Physical triggers such as tiredness, jet lag, exercise
  • Changes in sleep patterns or irregular sleep
  • Smoking or exposure to smoke
  • Skipping meals or fasting causing low blood sugar
  • Dehydration
  • Alcohol
  • Hormonal triggers such as menstrual cycle fluctuations, birth control pills, menopause
  • Tension headaches
  • Foods containing tyramine (red wine, aged cheese, smoked fish, chicken livers, figs, and some beans), monosodium glutamate (MSG), or nitrates (like bacon, hot dogs and salami)
  • Other foods such as chocolate, nuts, peanut butter, avocado, banana, citrus, onions, dairy products and fermented or pickled foods
  • Medication such as sleeping tablets, the contraceptive pill, hormone replacement therapy.
  • A higher percentage of obese people have episodic (occasional) migraines compared to individuals with a healthy body weight.
  • Sudden weather changes, including a drop in barometric pressure or changes in temperature, humidity, or wind
  • Loud noises
  • Perfumes or fumes
  • Secondhand smoke
  • Exposure to glare or flickering lights

Symptoms

Migraine symptoms may begin one to two days before the headache itself. This is known as the migraine’s prodrome stage. Symptoms include –

  • Food cravings
  • Depression
  • Fatigue or low energy
  • Frequent yawning
  • Hyperactivity
  • Irritability
  • Neck stiffness

Some people may also experience an aura after the prodrome stage. An aura causes visual, motor, and/or speech disturbances, such as –

  • Difficulty speaking clearly
  • Feeling a prickling or tingling sensation in the arms and legs
  • Flashes of light
  • Seeing shapes, light flashes or bright spots
  • Transient vision loss

The next phase is known as the attack phase. This is the most acute or severe of the phases when the actual migraine occurs. Attack phase symptoms can last anywhere from four hours to three days. Symptoms of a migraine can vary from person to person. Some symptoms may include –

  • Feeling dizzy or faint
  • Increased sensitivity to light and sound
  • Nausea
  • Pain on one side of the head
  • Pulsing and/or throbbing pain
  • Vomiting

Risk Factors

Family history – You are much more likely to have migraines if one or both of your parents had migraines.

Sex – Women are more likely than men to have migraines.

Age – Most people have their first migraine during adolescence, but migraines can start at any age, usually before age 40.

Treatment 

Medications

Analgesia – Over-the-counter medications such as naproxen, ibuprofen, acetaminophen (paracetamol), and other analgesics like Excedrin (aspirin with caffeine) are often the first abortive therapies to eliminate the headache or substantially reduce pain.

Anti-emetics – Metoclopramide may also be used to control symptoms such as nausea and vomiting.

Serotonin agonists – Sumatriptan may also be prescribed for severe migraines or for migraines that are not responding to the over-the-counter medications. Antidepressants such as tricyclics – are prescribed to reduce migraine symptoms although they are not approved in all countries for this purpose.

Ergots – Another class of abortive treatments is called ergots, which are usually effective if administered at the first sign of a migraine.

Alternative Treatment

5-hydroxytryptophan – Body makes the amino acid 5-HTP and converts it into serotonin, an important brain chemical. Researchers think abnormal serotonin function in blood vessels may be related to migraines, and some of the drugs used to treat migraines work by affecting serotonin.

Magnesium – People with migraines often have lower levels of magnesium than people who do not have migraines, and several studies suggest that magnesium may reduce the frequency of migraine attacks in people with low levels of magnesium.

Vitamin B2 – A few studies indicate that riboflavin may reduce the frequency and duration of migraines. In one study, people who took riboflavin had more than a 50% decrease in the number of attacks.

Coenzyme Q10 – CoQ10 can interact with several medications including blood thinners such as warfarin (Coumadin), some cancer medications, and medications for high blood pressure.

Melatonin – Melatonin can interact with a number of medications, so ask your doctor before taking it.

Butterbur – A few studies suggest that butterbur may help reduce both the frequency and duration of migraine attacks when taken on a regular basis for up to 4 months. More research is needed to see whether butterbur is really effective at preventing migraines.

Feverfew – Feverfew has been used traditionally to treat headaches, and several well-designed studies have found that it may help prevent and treat migraines.

Acupuncture has been studied as a treatment for migraine headache for more than 20 years. While not all studies have shown it helps, researchers agree that acupuncture appears safe, and may work for some people.

Chiropractic – In another study, people with migraine headaches were randomly assigned to receive spinal manipulation, a daily medication (Elavil), or a combination of both. Spinal manipulation worked as well as Elavil in reducing migraines and had fewer side effects. Combining the 2 therapies didn’t work any better.

Reflexology is a technique that places pressure on specific “reflex points” on the hands and feet that are believed to correspond to areas throughout the body. Some early studies suggest it may relieve pain and allow people with migraines to take less pain medication.

 

Reference –

https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/headache-migraine

http://www.mayoclinic.org/diseases-conditions/migraine-headache/basics/treatment/con-20026358

http://www.medicinenet.com/migraine/article.htm

http://www.migraine.org.uk/get-involved/events

https://www.acponline.org/patients_families/pdfs/health/migraine.pdf

http://familydoctor.org/familydoctor/en/diseases-conditions/migraines.html

http://www.migraines.org/myth/mythreal.htm

https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/headache-migraine

 

 

 

February 8, 2017

The metabolic syndrome is a cluster of the most dangerous heart attack risk factors: diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. When a patient presents with these risk factors together, the chances for future cardiovascular problems are greater than any one factor presenting alone.

The term “metabolic” refers to the biochemical processes involved in the body’s normal functioning. Risk factors are traits, conditions, or habits that increase the chance of developing a disease.

Metabolic syndrome is a serious health condition that affects about 34 percent of adults and places them at higher risk of cardiovascular disease, diabetes, stroke and diseases related to fatty buildups in artery walls. The underlying causes of metabolic syndrome include overweight and obesity, physical inactivity and genetic factors.

The condition is also known by other names including Syndrome X, insulin resistance syndrome, and dysmetabolic syndrome. According to a national health survey, more than one in five Americans has metabolic syndrome. The number of people with metabolic syndrome increases with age, affecting more than 40 percent of people in their 60s and 70s.

Causes

Metabolic syndrome has several causes that act together. A person can control some of the causes, such as overweight and obesity, an inactive lifestyle, and insulin resistance.

People can’t control other factors that may play a role in causing metabolic syndrome, such as growing older. The risk for metabolic syndrome increases with age.

People also can’t control genetics (ethnicity and family history), which may play a role in causing the condition. For example, genetics can increase the risk for insulin resistance, which can lead to metabolic syndrome.

People who have metabolic syndrome often have two other conditions: excessive blood clotting and constant, low-grade inflammation throughout the body. Researchers don’t know whether these conditions cause metabolic syndrome or worsen it.

Researchers continue to study conditions that may play a role in metabolic syndrome, such as –

  • A fatty liver (excess triglycerides and other fats in the liver)
  • Polycystic ovarian syndrome (a tendency to develop cysts on the ovaries)
  • Gallstones
  • Breathing problems during sleep (such as sleep apnea)

Risk Factors

The following factors increase the chances of having metabolic syndrome –

  • Age – The risk of metabolic syndrome increases with age, affecting 40 percent of people over the age of 60.
  • Race – Hispanics and Asians seem to be at greater risk of metabolic syndrome than are people of other races.
  • Obesity – Carrying too much weight increases the risk of metabolic syndrome
  • Diabetes – People are more likely to have metabolic syndrome if they had diabetes during pregnancy (gestational diabetes) or if they have a family history of type 2 diabetes.
  • Other diseases – The risk of metabolic syndrome is higher if people have ever had cardiovascular disease, nonalcoholic fatty liver disease or polycystic ovary syndrome.

Symptoms

Clinical manifestations of metabolic syndrome include the following –

  • Hypertension
  • Hyperglycemia
  • Hypertriglyceridemia
  • Reduced high-density lipoprotein cholesterol (HDL-C)
  • Abdominal obesity
  • Chest pains or shortness of breath: Suggesting the rise of cardiovascular and other complications
  • Acanthosis nigricans, hirsutism, peripheral neuropathy, and retinopathy: In patients with insulin resistance and hyperglycemia or with diabetes mellitus
  • Xanthomas or xanthelasmas: In patients with severe dyslipidemia

Complications

  • Arteriosclerosis – This happens when cholesterol hardens and begins to build up in the walls of arteries, causing blockages that can lead to high blood pressure, heart attack, and stroke.
  • Poor kidney function – The kidneys become less able to filter toxins out of the blood, which can also increase the risk of high blood pressure, heart attack, or stroke.
  • Insulin resistance – This occurs when the body’s cells don’t respond to insulin (the hormone that helps to regulate sugar in the blood) normally, and that can lead to high blood sugar levels and diabetes.
  • Polycystic ovarian syndrome – Thought to be related to insulin resistance, this disorder involves the release of extra male hormones by the ovaries, which can lead to abnormal menstrual bleeding, excessive hair growth, acne, and fertility problems. It is also associated with an increased risk for obesity, hypertension, and — in the long-term — diabetes, heart disease, and cancer.
  • Acanthosis nigricans – A skin disorder that causes thick, dark, velvet-like patches of skin around the neck, armpits, groin, between the fingers and toes, or on the elbows and knees.

Treatment

Lose weight – Moderate weight loss, in the range of 5 percent to 10 percent of body weight, can help restore your body’s ability to recognize insulin and greatly reduce the chance that the syndrome will evolve into a more serious illness. This can be done via diet, exercise, or even with help from certain weight-loss medications if recommended by your doctor.

Exercise – Increased activity alone can improve your insulin levels. Aerobic exercise such as a brisk 30-minute daily walk can result in a weight loss, improved blood pressure, improved cholesterol levels and a reduced risk of developing diabetes. Most health care providers recommend 150 minutes of aerobic exercise each week. Exercise may reduce the risk for heart disease even without accompanying weight loss.

Consider dietary changes – Maintain a diet that keeps carbohydrates to no more than 50 percent of total calories. Eat foods defined as complex carbohydrates, such as whole grain bread (instead of white), brown rice (instead of white), and sugars that are unrefined (instead of refined; for example cookies, crackers).

Alternative Treatment

 

Reference –

http://umm.edu/health/medical/ency/articles/metabolic-syndrome

http://www.liebertpub.com/overview/metabolic-syndromebrand-related-disorders/115/

https://my.clevelandclinic.org/health/diseases_conditions/hic_Metabolic_Syndrome

http://patient.info/doctor/metabolic-syndrome

http://www.emedicinehealth.com/metabolic_syndrome/article_em.htm

http://www.liebertpub.com/editorialboard/metabolic-syndromebrand-related-disorders/115/

http://www.heart.org/HEARTORG/Conditions/More/MetabolicSyndrome/Metabolic-Syndrome_UCM_002080_SubHomePage.jsp

http://www.nhlbi.nih.gov/health/health-topics/topics/ms

https://www.pritikin.com/your-health/health-benefits/reverse-metabolic-syndrome/1381-metabolic-syndrome-cleaning-up-a-mess.html

http://familydoctor.org/familydoctor/en/diseases-conditions/metabolic-syndrome.html

 

 

February 8, 2017

Long QT syndrome (LQTS) is a disorder of the heart’s electrical activity. It can cause sudden, uncontrollable, dangerous arrhythmias (ah-RITH-me-ahs) in response to exercise or stress. Arrhythmias are problems with the rate or rhythm of the heartbeat.

People who have LQTS also can have arrhythmias for no known reason. However, not everyone who has LQTS has dangerous heart rhythms. When they do occur, though, they can be fatal.

The electrical activity of the heart is produced by the flow of ions (electrically charged particles of sodium, calcium, potassium, and chloride) in and out of the cells of the heart. Tiny ion channels control this flow. The Q-T interval is the section on the electrocardiogram (ECG) – that represents the time it takes for the electrical system to fire an impulse through the ventricles and then recharge. It is translated to the time it takes for the heart muscle to contract and then recover.

LQTS occurs as the result of a defect in the ion channels, causing a delay in the time it takes for the electrical system to recharge after each heartbeat. When the Q-T interval is longer than normal, it increases the risk for torsade de pointes, a life-threatening form of ventricular tachycardia. LQTS is rare. The prevalence is about 1 in 5,000 persons in the Untied States.

Long QT syndrome can cause temporary loss of consciousness and cardiac arrest, as well as sudden death — which, unfortunately, is sometimes the first symptom of untreated LQTS.

Causes

LQTS can be congenital (present at birth) or acquired (developed under certain conditions).

Congenital LQTS is related to an inherited genetic defect. Thirteen genes have been associated with the disorder, but mutations on three of them account for most cases. Because the gene abnormalities are present at birth, congenital LQTS often is diagnosed in childhood, sometimes as early as one or two years old. Risk of arrhythmia is related to a patient’s particular gene defect. For instance, people with a mild genetic abnormality might not experience symptoms unless exposed to a trigger, such as an LQTS-inducing drug.

Congenital LQTS manifests in different ways, depending on the particular gene affected. In patients with long QT syndrome type 1 (LQTS1), arrhythmia is commonly triggered by exercise, especially swimming. Patients with LQTS2 may experience arrhythmia after being startled, such as by a loud telephone ring. For those with LQTS3, arrhythmia is usually triggered at night during sleep.

Acquired LQTS usually is caused by certain commonly prescribed medications that can lengthen the QT interval, triggering dangerous arrhythmias in some patients. Among several classes of drugs that can induce this disorder, those at highest risk include medications for cardiac arrhythmias; drugs used to treat psychiatric illness; and antibiotics, particularly those in the quinolone and macrolide families. An extensively used pain reliever called methadone, and some cold medications also may cause a prolonged QT interval.

Acquired LQTS also can occur due to an electrolyte disturbance, such as low potassium caused by severe diarrhea or vomiting.

Risk Factors

People who may have a higher risk of inherited or acquired long QT syndrome may include –

  • Children, teenagers and young adults with unexplained fainting, unexplained near drownings or other accidents, unexplained seizures, or a history of cardiac arrest
  • Family members of children, teenagers and young adults with unexplained fainting, unexplained near drownings or other accidents, unexplained seizures, or a history of cardiac arrest
  • First-degree relatives of people with known long QT syndrome
  • People taking medications known to cause prolonged QT intervals
  • People with low potassium, magnesium or calcium blood levels — such as those with the eating disorder anorexia nervosa

Long QT syndrome often goes undiagnosed or is misdiagnosed as a seizure disorder, such as epilepsy. However, long QT syndrome might be responsible for some otherwise unexplained deaths in children and young adults. For example, an unexplained drowning of a young person might be the first clue to inherited long QT syndrome in a family.

Symptoms

Major Signs and Symptoms

If people have long QT syndrome (LQTS), they can have sudden and dangerous arrhythmias (abnormal heart rhythms). Signs and symptoms of LQTS-related arrhythmias often first occur during childhood and include –

  • Unexplained fainting. This happens because the heart isn’t pumping enough blood to the brain. Fainting may occur during physical or emotional stress. Fluttering feelings in the chest may occur before fainting.
  • Unexplained drowning or near drowning. This may be due to fainting while swimming.
  • Unexplained sudden cardiac arrest (SCA) or death. SCA is a condition in which the heart suddenly stops beating for no obvious reason. People who have SCA die within minutes unless they receive treatment. In about 1 out of 10 people who have LQTS, SCA or sudden death is the first sign of the disorder.

Other Signs and Symptoms – Often, people who have LQTS 3 develop an abnormal heart rhythm during sleep. This may cause noisy gasping while sleeping.

Silent Long QT Syndrome – Sometimes long QT syndrome doesn’t cause any signs or symptoms. This is called silent LQTS. For this reason, doctors often advise family members of people who have LQTS to be tested for the disorder, even if they have no symptoms.

Complications

Sometimes, prolonged QT intervals in people with long QT syndrome never cause problems. However, physical or emotional stress might “trip up” a heart susceptible to prolonged QT intervals. This can cause the heart’s rhythm to spin out of control, triggering life-threatening, irregular heart rhythms (arrhythmias) including –

  • Torsades de pointes — ‘twisting of the points‘ – This arrhythmia is characterized by the heart’s two lower chambers (ventricles) beating fast, making the waves on an ECG monitor look twisted.
  • Ventricular fibrillation – This condition causes the ventricles to beat so fast that the heart quivers and effectively ceases pumping blood.

Treatment

LQTS is a treatable condition and the doctor may prescribe medication, surgery or recommend lifestyle changes.

Medication – Beta-blockers are the most commonly prescribed medication and they work by slowing the heart rate by reducing the effect of adrenaline on the heart. It is important to discuss with the doctor the medications that work best for some and to follow instructions carefully.

Surgery – In certain circumstances, some may be required to have surgery on nerves that regulate the heartbeat or they may need an implantable cardioverter defibrillator (ICD) if LQTS causes abnormal heart rhythms.

Lifestyle – If properly treated and controlled, many people with LQTS require very few changes to their normal lifestyle. However, a diagnosis of LQTS may require the patient to make some adjustments to their lifestyle. For instance certain sports or activities increase the risk of fainting or more serious events in patients with LQTS. It is important for the patient to discuss this matter with their cardiologist to determine how best to live a healthy, active lifestyle while minimizing the risk of further complications.

Alternative Treatment

Potassium – Potassium is a mineral that is found in the body. It is derived from the diet and is important for cardiac health. Potassium supplements may improve the heart’s recharging system and may be helpful for people with certain forms of LQTS. If the potassium content in the blood rises, the action potential shortens. It is believed that increasing potassium concentration could minimize the occurrence of arrhythmias. Potassium supplements tend to work best in LQT2, because the HERG (human ether-a-go-go-related gene) potassium channel in the heart is especially sensitive to potassium concentration.

Magnesium – Intravenous magnesium has been reported to reduce the incidence of atrial fibrillation and cardiac arrhythmia.

Aconite – The toxic effects associated with aconitine (a poisonous alkaloid and the active principle of aconite) limit its ability to be used to treat arrhythmia.

Corydalis – Early evidence suggests certain compounds found in corydalis may be of benefit for arrhythmia.

L-carnitine – L-carnitine, or acetyl-L-carnitine, is an amino acid found in the body. L-carnitine has been reported to be beneficial in maintaining a healthy heart. Although preliminary results are promising, well-designed and reported clinical trials investigating the effect of L-carnitine on arrhythmia are lacking.

Omega-3 fatty acids – There is evidence from multiple clinical studies supporting the intake of omega-3 fatty acid (also known as fish oil) supplements for a healthy heart. Fish oil supplements have been reported to lower triglycerides and reduce the risk of death, heart attack, and stroke in people with known heart disease. Fish oil may also slow the buildup of atherosclerotic plaques (hardening of the arteries) and lower blood pressure slightly.

Traditional Chinese medicine – Traditional Chinese medicine (TCM) is a broad term encompassing many different methods and traditions of healing, such as acupuncture, herbal medicines, cupping, and moxibustion. They share a common heritage of technique or theory rooted in ancient Chinese philosophy (Taoism) and dating back over 5,000 years. TCM herb combinations have been used to stabilize arrhythmias after viral myocarditis (inflammation of the heart).

 

Reference –

http://lifeinthefastlane.com/ecg-library/basics/qt_interval/

https://www.nhlbi.nih.gov/health/health-topics/topics/qt

http://my.clevelandclinic.org/services/heart/disorders/arrhythmia/long-qt-syndrome

http://www.sads.org/What-is-SADS/Long-QT-Syndrome#.VsHzdPJ97IV

http://www.heartandstroke.com/site/c.ikIQLcMWJtE/b.3484075/k.F8EF/Heart_disease__What_is_Long_QT_Syndrome.htm

http://www.chop.edu/conditions-diseases/long-qt-syndrome#.VsHNmPJ97IU

http://www.irishheart.ie/iopen24/long-syndrome-support-group-t-11_35_221.html

http://www.huffingtonpost.com/entry/awareness-of-long-qt-synd_b_8330360.html?section=india

http://www.seattlechildrens.org/medical-conditions/heart-blood-conditions/long-qt-syndrome-symptoms/

http://www.nhs.uk/conditions/long-qt-syndrome/Pages/Introduction.aspx

https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/long-qt-syndrome

https://stanfordhealthcare.org/medical-conditions/blood-heart-circulation/long-qt-syndrome.html

 

February 8, 2017

Kawasaki disease is the most common cause of acquired heart disease in children. It affects about 7,000 children in the United States every year. Although most with Kawasaki disease are younger than 5 years, it can occur in children of all ages and even in young adults.

Kawasaki disease is a rare syndrome of unknown origin that causes high fever, reddening of the eyes (conjunctivitis), lips and mucous membrane of the mouth, gingivitis (ulcerative gum disease), swollen neck glands and a bright red rash over the skin of the hands and feet, in young children.

Kawasaki disease causes inflammation in the walls of arteries throughout the body, including the coronary arteries, which supply blood to the heart muscle. As it affects the lymph nodes, skin, and mucous membranes inside the nose, mouth and throat it is also called mucocutaneous lymph node syndrome.

Kawasaki disease is more common in boys than girls. It was first diagnosed by Tomiraku Kawasaki, a Japanese doctor in 1967, hence the name. Kawasaki disease has nothing to do with motorbikes or motorbike accidents.

Causes

Although Kawasaki disease can occur in community outbreaks, particularly in the winter and early spring, no one knows the cause. The peak age of occurrence in the United States is between six months and five years.

Infection – The symptoms of Kawasaki disease are similar to those of an infection. This means that bacteria or a virus may be responsible. However, so far, a bacterial or viral cause hasn’t been identified. As Kawasaki disease isn’t contagious, it can’t be passed from one person to another. Therefore, it is unlikely to be caused by a virus alone.

Genetics – The children who develop Kawasaki disease may be genetically predisposed to it. This means that the genes they inherit from their parents may make them more likely to get the condition. One theory is that rather than there being a single gene responsible for Kawasaki disease, it may be the result of many genes that each slightly increase the chances of a child developing the condition.

Others – One theory is that Kawasaki disease may be an autoimmune condition (where the immune system attacks healthy tissues and organs). Other theories suggest Kawasaki disease may be a reaction to certain medications, or environmental pollutants such as chemicals or toxins (poisons).

Risk Factors

Three things are known to increase your child’s risk of developing Kawasaki disease, including: –

  • Age – Children under 5 years old are most at risk of Kawasaki disease.
  • Sex – Boys are slightly more likely than girls are to develop Kawasaki disease.
  • Ethnicity – Children of Asian descent, such as Japanese or Korean, have higher rates of Kawasaki disease.

Symptoms

Major Signs and Symptoms

One of the main symptoms during the early part of Kawasaki disease, called the acute phase, is fever. The fever lasts longer than 5 days. It remains high even after treatment with standard childhood fever medicines.

Other classic signs of the disease are –

  • Swollen lymph nodes in the neck
  • A rash on the mid-section of the body and in the genital area
  • Red, dry, cracked lips and a red, swollen tongue
  • Red, swollen palms of the hands and soles of the feet
  • Redness of the eyes

Other symptoms that may develop include –

  • arthritis-like symptoms (joint pain and swelling of the joints)
  • extreme irritability
  • diarrhea
  • vomiting
  • abdominal pain
  • enlarged liver or gallbladder
  • cough and respiratory symptoms

Kawasaki and Autism – Studies reported that there is a statistically significant association between Kawasaki disease and the diagnosis of an autistic disorder. Population-based claims database, tested the hypothesis that Kawasaki disease may increase the risk of autism.

Complications

Even though complications are very rare, when they do occur they can be serious, and on some occasions fatal.

Aneurysm – the blood vessels leading to the heart can become inflamed, causing a section of the artery wall to weaken and bulge outwards. If the aneurysm does not heal itself a blood clot can form, which raises the risk of a heart attack or internal bleeding if the aneurysm bursts.

The following complications from Kawasaki disease are also possible:

  • Myocarditis – inflammation of the myocardium (heart muscle).
  • Pericarditis – inflammation of the pericardium (lining around the heart).
  • Arrhythmia – irregular heart beat.
  • Cardiomegaly – the heart becomes larger than normal as a result of heart disease.
  • Mitral regurgitation – blood flows back from the left ventricle to the left atrium of the heart due to a valve problem (blood flows back when it shouldn’t).

Treatment

Medications – Two main medicines for Kawasaki disease treatment:

  • Aspirin – children under 16 should not be given aspirin. However, it is prescribed if a child has Kawasaki disease. Children with Kawasaki disease have a very high blood platelet count, making them very susceptible to blood clots forming in their bloodstream. Aspirin helps prevent blood clots, as well as reducing the fever, rash and joint inflammation.
  • Gammaglobulin – these are cells in the blood which help fight infection (antibodies). Gammaglobulin is administered intravenously (through a vein in the child’s arm). Symptoms tend to improve rapidly; within 24 hours of administering gammaglobulin.

Coronary artery angioplasty – this procedure opens up an artery that has narrowed by inflating a small balloon inside the artery which squashes a clot against the wall of the blood vessel.

Stent – a stent may be placed in the clogged artery to help prop it open, reducing the risk of it becoming blocked again. A stent placement is often done along with an angioplasty.

Coronary artery bypass graft – blood flow is rerouted round a diseased coronary artery by grafting a section of blood vessel from the chest, arm or leg to use as the alternate route. The bypass effectively goes around the blocked area of the artery, allowing blood to pass through into the heart muscle.

Alternative Treatment

Copper Supplements – Copper is essential to all living organisms and is a universally important cofactor for many hundreds of metalloenzynes. Copper deficiency is widespread and appears in many forms . It leads to Kawasaki disease.

 

Reference –

http://www.aafp.org/afp/2006/1001/p1141.html

http://www.examiner.com/article/kawasaki-disease-syndrome

http://www.mayoclinic.org/diseases-conditions/kawasaki-disease/basics/risk-factors/con-20024663

https://www.nhlbi.nih.gov/health/health-topics/topics/kd/signs

http://www.kkh.com.sg/HealthPedia/Pages/ChildhoodIllnessesHeartKawasakiDisease.aspx

http://patient.info/health/kawasaki-disease-leaflet

http://arstechnica.com/science/2015/06/the-mystery-of-kawasaki-disease/

http://www.independent.co.uk/news/world/asia/kawasaki-disease-an-unknown-illness-with-no-definitive-medical-diagnosis-and-no-known-cause-but-it-10376403.html

 

 

February 8, 2017

Inflammation is the innate immune system response to an attack on the body. This can occur through a blunt-force or penetrating tissue injury or in response to an infection caused by a pathogen. Exposure to chemical irritants or toxins will cause inflammation, as will burns, frostbite, or other injuries.

The word inflammation comes from the Latin “inflammo”, meaning “I set alight, I ignite”. Inflammation is a process by which the body’s white blood cells and substances they produce protect the human body from infection with foreign organisms, such as bacteria and viruses. With inflammation, white blood cells are released to protect the body from injury. These white blood cells have chemicals within them that, when leaked, induce swelling. If the injury occurs near the surface of the skin, the damaged area will throb and become red and warm. Blood flow also increases during inflammation. Inflammation can also affect internal organs, displaying a variety of symptoms depending upon the organ involved. The most common symptom of inflammation is pain.

However, in some diseases like, asthma, diabetes, obesity, depression, heart disease, arthritis, Alzheimer’s disease, osteoporosis, and other aging diseases, researchers have proven significant link between inflammation and the host.

The inflammation process protects the body by isolating the damaged area, attracting immune cells and molecules to the site and, in later stages, promoting the healing of affected tissues. In fact, without inflammation, wounds or infections would never heal.

Types of Inflammation

Acute inflammation occurs within minutes of an injury such as a cut, splinter, or insect bite. Or, it can take several hours to become fully activated in cases of bacterial infection, for example. But, in either case, it is a comparatively sudden, rapid, and short-term response to infection, injury, or toxic exposure. Signs and symptoms are only present for a few days, but in some cases may persist for a few weeks. Examples include –

  • Acute bronchitis
  • Infected ingrown toenail
  • Sore throat from a cold or flu
  • A scratch/cut on the skin
  • Exercise (especially intense training)
  • Acute appendicitis
  • Acute dermatitis
  • Acute tonsillitis
  • Acute infective meningitis
  • Acute sinusitis
  • A blow

The acute inflammatory response requires constant stimulation to remain active. So, when the injury starts to heal or the source of infection has been neutralized, the symptoms of inflammation also go away.

Chronic Inflammation occurs when the immune system can launch an inflammatory response against what should be relatively harmless irritants like, for example, dust or pollen. The resulting asthma or allergy attacks can often be far worse than the effects of exposure to the allergen itself. In some cases, the body can sustain a long-term inflammatory state in response to a lingering, low-grade infection that is never fully knocked out by the rest of the immune response. Examples include –

  • Asthma
  • Chronic peptic ulcer
  • Tuberculosis
  • Rheumatoid arthritis
  • Chronic periodontitis
  • Ulcerative colitis and Crohn’s disease
  • Chronic sinusitis
  • Chronic active hepatitis

However, chronic inflammation can eventually cause several diseases and conditions, including some cancers, rheumatoid arthritis, atherosclerosis, periodontitis, and hay fever. Inflammation needs to be well regulated.

CAUSES

There are many causes of inflammation ranging from blunt trauma and injuries to long-term, chronic health conditions. Inflammation can also be provoked by sore joints, muscles, and broken bones that have either not healed at all, or have healed incorrectly. Inflammation is one of the man conditions that can result from a compromised immune system.

  • Microbial infections – One of the most common causes of inflammation is microbial infection. Microbes include viruses, bacteria, protozoa, fungi and various parasites. Viruses lead to death of individual cells by intracellular multiplication, and either cause the cell to stop functioning and die, or cause explosion of the cell (cytolytic), in which case it also dies. Bacteria release specific toxins – either exotoxins or endotoxins. What’s the difference? Exotoxins are produced specifically for export (like anthrax toxins or tetanus toxins) whereas endotoxins are just part of the cell walls of Gram negative bacteria and they do terrible things to the body too but they aren’t as specific in their actions as the exotoxins.
  • Hypersensitivity reactions – A hypersensitivity reaction occurs when an altered state of immunologic responsiveness causes an inappropriate or excessive immune reaction that damages the tissues.
  • Physical agents, irritant and corrosive chemicals Tissue damage leading to inflammation may occur through physical trauma, ultraviolet or other ionizing radiation, burns or excessive cooling (‘frostbite’). Corrosive chemicals (acids, alkalis, oxidizing agents) provoke inflammation through direct tissue damage. These chemical irritants cause tissue damage that leads directly to inflammation.
  • Tissue necrosis – Death of tissues from lack of oxygen or nutrients resulting from inadequate blood flow (infarction) is a potent inflammatory stimulus. The edge of a recent infarct often shows an acute inflammatory response.

Possibly, one of the greatest reasons for inflammation is an imbalance of essential fatty acids. It is very important to maintain a balance between omega-3 and omega-6 fatty acids in the diet. Omega-3 fatty acids help reduce inflammation and most omega-6 fatty acids tend to promote inflammation. An inappropriate balance of these essential fatty acids contributes to the development of disease while a proper balance helps maintain and even improve health.

A healthy diet should consist of roughly one to four times more omega-6 fatty acids than omega-3 fatty acids. The typical American diet tends to contain 11 to 30 times more omega-6 fatty acids than omega-3 fatty acids and many researchers believe this imbalance is a significant factor in the rising rate of inflammatory disorders in the United States.

The four Principle Effects of Inflammation

  • Redness (rubor) – An acutely inflamed tissue appears red, due to dilatation of small blood vessels within the damaged area (hyperemia).
  • Swelling (tumor) – Swelling results from edema, the accumulation of fluid in the extravascular space as part of the inflammatory fluid exudate, and to a much lesser extent, from the physical mass of the inflammatory cells migrating into the area.
  • Heat (calor) – Increase in temperature is readily detected in the skin. It is due to increased blood flow (hyperemia) through the region, resulting in vascular dilation and the delivery of warm blood to the area.
  • Pain (dolor) – Pain results partly from the stretching and distortion of tissues due to inflammatory edema and, in part from some of the chemical mediators of acute inflammation, especially bradykinin and some of the prostaglandins.
  • Loss of function (functio laesa) – Loss of function, a well-known consequence of inflammation. Movement of an inflamed area is inhibited by pain, either consciously or by reflexes, while severe swelling may physically immobilize the affected area.

Autoimmune Diseases and Inflammation

An autoimmune disease, also known as autoimmune disorder, is one where the body initiates an immune response to healthy tissues, mistaking them for harmful pathogens or irritants. The immune response triggers an inflammatory response. These include –

  • Rheumatoid arthritis – There is inflammation in the joints, tissues surrounding the joints, and sometimes some other organs in the body
  • Ankylosing spondylitis – There is inflammation of the vertebrae, muscles, ligaments, and also the sacroiliac joints (where the spine and hips meet)
  • Celiac disease – There is inflammation and destruction of the inner lining of the small intestine
  • Crohn’s disease – The gastrointestinal tract becomes inflamed. Inflammation is most common in the ileum (small intestine), but may occur anywhere in the GI tract, from the mouth to the anus
  • Fibromyalgia – Often a set of symptoms related to another autoimmune disorder, such as lupus or rheumatoid arthritis. There is pain in various parts of the body. Location and even the existence of inflammation is unclear
  • Graves’ disease – One of the signs is goiter; when the thyroid gland is inflamed. Exophthalmos, inflammation of the muscles behind the eyes. Grave’s dermopathy, inflammation of the skin, usually the shins and the top of feet (uncommon)
  • Idiopathic pulmonary fibrosis – The role of inflammation is unclear. Experts used to think that the disease was mainly caused by inflammation within the alveoli (tiny sacs within the lungs
  • Lupus – There can be inflammation in the joints, lungs, heart, kidney and skin
  • Psoriasis – There is inflammation of the skin. In some cases, as in psoriatic arthritis, the joints and tissue surrounding the joints may also become inflamed
  • Type 1 Diabetes – Inflammation in various parts of the body are likely if the diabetes is not well controlled
  • Addison’s disease – Inflammation of the adrenal glands. The stress to the body caused by this disease can also lead to inflammation elsewhere
  • Vaslculitis – Refers to a group of disorders in which inflammation eventually destroys blood vessels, both arteries and veins
  • Transplant rejection – There is already substantial inflammation caused by the transplant operation. If the organ recipient’s immune system rejects the new organ, there is typically inflammation in and around the donated organ
  • Various allergies – All allergies have inflammation. Asthma has inflammation of the airways, in hay fever the nose, ear and throat mucous membranes become inflamed, people who are allergic to bee stings may have serious life-threatening inflammation which affects the whole body (anaphylaxis)
  • Vitamin A deficiency – Inflammatory responses are much more likely if the person is deficient in vitamin A.

Inflammation and Gut

Inflammation leads to disturbed gut flora, malfunctioning toll-like receptors, and leaky gut, allowing proteins to enter the body and provoke an inflammatory response by the immune system. More inflammation, more bacterial overgrowth. A bout of antibiotics thrown in for good measure which wipes out the bacteria, leaving a clean slate and prompting another mad dash by microbes to fill the vacancies, and the result is – potentially – a permanently altered/disrupted distribution of gut flora both supporting and supported by chronic systemic inflammation. When damaging proteins (like lectins from grains and legumes, for example, or gluten)  slip into the blood stream, they are recognized and the immune system responds as it normally would to foreign, damaging intruders: with inflammation.

Treatment

Conventional Treatment

Analgesics – These reduce pain, but do not reduce inflammation. These include Acetaminophen like Tylenol. Side effects include depleted Glutathione, which plays a critical part in the detoxification and anti-oxidation processes of the enzyme system.

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) – These are the most widely used and prescribed medications, since they reduce pain as well as inflammation. These include Aspirin which reduces inflammation, suppresses fever, and acts as an anticoagulant. Side effects include reduction in the levels of Folic acid, iron, potassium, sodium, and vitamin C.

Corticosteroids – These are synthetic forms of naturally occurring hormones produced by the adrenal glands that provide powerful and immediate short-term relief of inflammation. These include Cortisone, Hydrocortone, and Prednisone.

Alternative Treatment

Essential Fatty Acids – GLA (GammaLinoleicAcid) & Omega-3 essential fatty acids (EPA/DHA from fish oils). The daily consumption of fish oil, omega-3 reduced both inflammation and anxiety in a group of young healthy people.

Antioxidants – Acai, blueberry, cranberry, grape seed, green tea, hesperidin, lycopene, mangosteen, pomegranate, quercetin have has anti-allergy, antibacterial, anti-inflammatory, antifungal and antihistamine properties.

Minerals – Calcium,magnesium, phosphorus, potassium, sodium are powerful anti-inflammatory nutrient.

Vitamin D – The increased levels of vitamin D was shown to improve muscular function, control blood pressure and improve levels of glucose in the body.

Vitamin C – A hardworking antioxidant, vitamin C offers two added bonuses: it helps the body deal with stress, and it boosts the activity of another outstanding anti-inflammatory, vitamin E.

Vitamin E – While vitamin E is commonly known as a fat-soluble antioxidant, it is also becoming a more popular choice to use as an anti-inflammatory.

Trace Minerals – Boron, chromium, copper, iodine, iron, manganese, molybdenum, selenium, silver, zinc help in inflammation.

Herbs

Harpagophytum procumbens – also known as devil’s claw, wood spider or grapple plant comes from South Africa and is related to sesame plants. European colonists brought devil’s claw back home to treat arthritis, fever and pain.

Ginger, also known as ginger root, is the mass of roots (rhizome) of the Zingiber officinale plant. It is used as a medicine or a spice. It has been used for hundreds of years to treat dyspepsia, constipation, colic, other gastrointestinal problems, as well as rheumatoid arthritis pain.

Curcumin a powerhouse anti-inflammatory, curcumin is the active ingredient in turmeric, the spice used in curries and other Indian foods.

Boswellia (frankincense). Similarly, the boswellia plant, from which the aromatic resin frankincense is derived, contains powerful anti-inflammatory compounds known as boswellic acids.

Spirulina. This increasingly popular blue-green microalgae variety is poised to become the next big thing as far as “superfoods” are concerned, and for good reason.

Cannabis contains a cannabinnoid called cannabichromene, which has been shown to have anti-inflammatory properties.

 

Reference

http://www.medicalnewstoday.com/articles/248423.php?page=2

http://articles.mercola.com/sites/articles/archive/2013/03/07/inflammation-triggers-disease-symptoms.aspx

http://lpi.oregonstate.edu/mic/micronutrients-health/inflammation

http://www.webmd.com/a-to-z-guides/prevention-15/vitamins/chronic-pain-relief

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011108/

http://www.nutrishield.com/the-science/anti-inflammatory/

http://www.aboutibs.org/site/what-is-ibs/gut-bacteria

http://www.marksdailyapple.com/gut-flora-inflammation/#axzz3r0tcTbCh

http://kellybroganmd.com/article/from-gut-to-brain-the-inflammation-connection/

http://articles.mercola.com/sites/articles/archive/2013/03/07/inflammation-triggers-disease-symptoms.aspx