Hemochromatosis

February 7, 2017

Hemochromatosis (HH) is a disease that results from excessive amounts of iron in the body (iron overload).

Hereditary (genetic) hemochromatosis (HHC) an inherited disorder of abnormal iron metabolism. Individuals with hereditary hemochromatosis absorb too much dietary iron. Once absorbed, the body does not have an efficient way of excreting iron excesses.  Over time, these excesses build to a condition of iron overload, which is a toxic to cells. Glands and organs, including the liver, heart, pituitary, thyroid, pancreas, synovium (joints) and bone marrow burdened with excess iron cannot function properly.  Symptoms develop and disease progresses.

As many as 1 in 200 Americans are believed to carry both copies of the gene for hemochromatosis, and it is estimated that about half of them will eventually develop complications. That puts it roughly on a par with type 1 diabetes for prevalence. Like type 2 diabetes, it is severely underdiagnosed.

Types of Hemochromatosis

Hemochromatosis is classified by type depending on the age of onset and other factors such as genetic cause and mode of inheritance.

Hemochromatosis type 1, the most common form of the disorder, and type 4 (also called ferroportin disease) are adult-onset disorders. Men with type 1 or type 4 hemochromatosis typically develop symptoms between the ages of 40 and 60, and women usually develop symptoms after menopause

Type 2 hemochromatosis is a juvenile-onset disorder. Iron accumulation begins early in life, and symptoms may begin to appear in childhood. By age 20, decreased or absent secretion of sex hormones is evident. Females usually begin menstruation in a normal manner, but menses stop after a few years. Males may experience delayed puberty or sex hormone deficiency symptoms such as impotence. If the disorder is untreated, heart disease is evident by age 30.

Onset of type 3 hemochromatosis is usually intermediate between types 1 and 2. Symptoms generally begin before age 30.generally begin before age 30.

In rare cases, iron overload begins before birth. These cases are called neonatal hemochromatosis. This type of hemochromatosis progresses rapidly and is characterized by liver damage that is apparent at birth or in the first day of life. The neonatal form causes rapid iron buildup in a baby’s liver that can lead to death.

Causes

Hemochromatosis is a hereditary disorder, which means it is passed down from parents to children through their genes. Hemochromatosis is mainly caused by a defect in the HFE gene. It is also known as primary hemochromatosis.

Some people get a copy of the HFE gene defect from just one parent. They are called “carriers” because they carry the defective gene and can pass it on to their children. Carriers usually do not get sick. People who get the HFE gene defect from both parents have a greater chance of getting the disease.

There are other types of hemochromatosis that are not caused by the HFE gene defect — including secondary, juvenile, and neonatal hemochromatosis – but they are less common than the primary form. Secondary hemochromatosis can be caused by disorders such as thalassemia, anemia, chronic alcoholism, and other conditions. Juvenile and neonatal hemochromatosis are caused by other types of gene defects.

Risk Factors

The known risk factors for hemochromatosis are:

Possessing two copies of a mutated HFE gene – the greatest risk factor for hereditary hemochromatosis. The person inherits one copy of the mutated HFE gene from each parent.

Family history – anybody who has a close relative (parent, offspring, brother or sister) with hemochromatosis is significantly more likely to develop it compared to other people.

Ancestry – people of British, Scandinavian Dutch, German, Irish and French ancestry have a higher risk of developing hemochromatosis compared to others. Their risk of having the HFE gene mutation is greater.

Gender – men are significantly more likely to develop hemochromatosis compared to women. Signs and symptoms tend to appear earlier on in life in males than females. This is because women lose iron during menstruation and pregnancy. A woman’s risk increases after the menopause or a hysterectomy. The male-to-female ratio is 1.8:1 (out of every 28 people with hemochromatosis, 18 are male and 10 are female).

Symptoms

A symptom is something the patient feels or reports, while a sign is something other people, including a doctor, may detect. For example, a headache may be a symptom while a rash may be a sign.

As signs and symptoms may be mild and could also be indications of other illnesses and conditions, identifying hemochromatosis is often not straightforward.

  • The main symptoms include:
  • Abdominal pain
  • Females may stop menstruating
  • High blood sugar levels
  • Hypothyroidism (low thyroid function)
  • Loss of libido (sex drive) and male impotence
  • Pain in the joints
  • Reduction in size of testicles
  • Skin becomes bronzed (has a tanned look)
  • Tiredness (fatigue)
  • Weakness
  • Weight loss

Complications

As the disorder progresses, the following conditions may develop:

  • Enlarged liver
  • Cirrhosis (scarring of the liver)
  • Liver cancer
  • Liver failure
  • Arthritis
  • Osteoporosis
  • Diabetes (from damage to the pancreas)
  • Irregular heartbeat
  • Enlarged heart
  • Congestive heart failure
  • Impotence
  • Early menopause
  • Hypothyroidism
  • Damage to adrenal glands
  • Enlarged spleen

Treatment

  • Venesection (phlebotomy) – iron-rich blood is removed from the body regularly, just as if the patient were donating blood. In this case the aim is to bring iron levels down to normal. How much blood is taken and how often depends on the patient’s age, overall health and the severity of the iron overload. In most cases blood is removed weekly until levels are back to normal. When iron levels build up again the patient will need venesection treatment again.

Although venesection cannot reverse the symptoms of cirrhosis, it can improve symptoms such as nausea, abdominal pain and fatigue.

  • Medication – the patient may be given a drug that binds iron, which is then excreted from the body.

If hemochromatosis is diagnosed and treated early, before too much excessive iron accumulates, the patient should have a normal lifespan, experts say.

Alternative Treatment

Excess iron and treatment – Getting iron levels down is very important to the outcome of hemochromatosis. A therapeutic phlebotomy or blood transfusion are usually accomplished this. Blood donations are done every eight weeks; sever conditions may require up to eight donations per month. Some medications may help also. The goal is to get iron levels down.

Herbal Therapy – Here are some herbal therapies that have been known to be useful in treating iron overload.

  • Dandelion—reduces constipation caused by excess iron conditions.
  • Wild Hyssop—regulates blood sugar, reduces pain and inflammation surrounding nerve tissues needing iron supply to vital organs needing nutrients.
  • Milk Thistle—reduces the iron storage in the body and lowers blood sugar levels.

Chelation Therapy – Chelating therapy removes excess minerals, and toxic materials from the body through the use of drugs; making it easier for them to tolerate phlebotomy.

EDTA Chelation Therapy – EDTA is used to remove heavy metals from the body, with IV therapy; given under supervision of medical supervision.

Calcium – Taking 300 mg of calcium per day with a meal is a simple way to block the absorbed iron, and reduce it about 40%. Some people do build up a tolerance to calcium, so regular blood tests are needed.

Vitamins and minerals

  • Vitamin B6—blocks absorption of iron, especially when taking vitamin C.
  • Avoid Vitamin C—limit taking vitamin c supplements over 500mg, eat more fresh vegetables and fruit containing vitamin C instead.
  • Vitamin E—antioxidant used as a blood thinner (400-800IU)
  • Manganese—protects against damage from excess iron.

Black Tea – Drinking black tea may reduce iron absorption, and reduces amount of frequent phlebotomies patients may have. Green tea is also powerful as a chelator to remove iron.

 

Reference –

http://www.lifeextension.com/protocols/metabolic-health/hemochromatosis/Page-01

https://my.clevelandclinic.org/health/diseases_conditions/hic_hemochromatosis

http://familydoctor.org/familydoctor/en/diseases-conditions/hereditary-hemochromatosis.html

https://www.aasld.org/sites/default/files/guideline_documents/Hemochromatosis2011.pdf

https://www.genome.gov/10001214

http://www.hopkinschildrens.org/hemochromatosis.aspx

http://www.aafp.org/afp/2013/0201/p183.html

http://www.yourgenesyourhealth.org/hc/whatisit.htm

http://www.hemochromatosisdna.com/about-the-disease/signs-and-symptoms

http://www.liver.ca/liver-disease/types/hemochromatosis.aspx

http://www.healthline.com/health/hemochromatosis

http://www.diabetes.org/living-with-diabetes/complications/related-conditions/hemochromatosis.html?referrer=https://www.google.co.in/

Posted in ORGAN SYSTEM